最新资讯
云南省专升本考试《高等代数》考试大纲
时间:2012-11-19 10:55 来源:未知 作者:博联教育 点击: 次
一、基本概念
(一)知识范围
1.映射
映射的定义
满射、单射与双射
映射的相等
映射的合成
逆映射
2.数域
数域的定义
最小的数域
(一)考核目标
1.熟记映射、满射、单射、双射的定义,理解它们之间的联系与区别。能根据定义判定所给的法则是否为映射,为何种映射。理解映射的相等与映射的合成概念。
2.会正确地判定所给的数集是否为数域。
二、一元多项式
(一)知识范围
1.一元多项式的概念、运算及整除性
一元多项式的定义
项、首项、常数项、系数、次数
零多项式
零次多项式
多项式的相等
多项式的加、减、乘的运算法则
多项式整除的定义
整除的基本性质
带余除法定理
2.多项式的最大公因式
因式、公因式、最大公因式的定义
辗转相除法
多项式互素的判别方法
多项式互素的性质
3.多项式的因式分解
不可约多项式的性质
因式分解存在唯一性定理
多项式的典型分解式
4.多项式的重因式与根
多项式有无重因式的判定
多项式的值与根(k重根、单根、重根)
余式定理
综合除法
5.复数域、实数域、有理数域上的多项式
代数基本定理
复数域上多项式的典型分解式
实数域上多项式的典型分解式
有理数域上多项式的可约性
艾森斯坦因判别法
有理数域上多项式的有理根
整系数多项式的有理根
三、行列式
(一)知识范围
1.排列
排列的定义
排列的反序数
排列的奇偶性
2.n阶行列式
n阶行列式的定义
行列式的项及项的符号
子式与代数余子式的概念
行列式的性质
行列式的依行依列展开
范德蒙行列式
3.克莱姆法则
(二)考核目标
1.理解排列的有关概念,会计算排列的反序数,确定排列的奇偶性。
2.深刻理解n阶行列式的定义并能利用定义计算行列式。
熟练掌握行列式的性质,能正确地依行依列展开行列式,并能灵活运用行列式的性质和展开定理计算行列式。
四、线性方程组
(一)知识范围
1.矩阵的初等变换与矩阵的秩
阶梯形矩阵
矩阵的k阶子式
矩阵的秩
矩阵的初等变换
矩阵的初等变换不改变矩阵的秩
用初等变换求矩阵的秩
用初等变换化矩阵为阶梯形
线性方程组的系数矩阵与增广矩阵
用初等变换解线性方程组
2.齐次线性方程组
齐次线性方程组的定义
齐次线性方程组的零解与非零解
齐次线性方程组有非零解的条件
齐次线性方程组的基础解系的定义、存在条件及求法
3.一般线性方程组有解的判别方法及解的求法
一般线性方程组可解的判别定理
唯一解的条件
无穷多解的条件
一般线性方程组求解的方法及解的结构
(二)考核目标
1.理解矩阵的k阶子式、矩阵的秩与矩阵初等变换的定义。熟练运用矩阵的初等变换求矩阵的秩和解线性方程组。
2.准确判定所给的齐次线性方程组有无非零解。在有非零解时,能熟练地求出齐次线性方程组的基础解系。
3.牢固掌握一般线性方程组可解的判别定理和线性方程组有唯一解及元穷多解的条件,会用导出齐次线性方程组的基础解系表示一般线性方程组的全部解。
五.矩 阵
(一)知识范围
1.矩阵的运算及运算律
矩阵可加的条件与加法法则
矩阵可乘的条件与乘法法则
数与矩阵的乘法法则
方阵的幂
矩阵运算的运算律
2.初等矩阵
初等矩阵的性质
初等矩阵与初等变换的联系
3.矩阵的逆
可逆矩阵与逆矩阵的定义
可逆矩阵的性质
可逆矩阵的判定
逆矩阵的求法
4.矩阵乘积的行列式与矩阵乘积的秩
(二)考核目标
1.熟练掌握矩阵各种运算的法则及运算规律。
2.记住初等矩阵的定义、性质其与初等变换的关系。
3.理解可逆矩阵的定义、性质,掌握矩阵可逆的判定法则,能熟练运用公式法:,及初等变换法求可逆矩阵的逆矩阵
六、向量空间
(一)知识范围
1.向量空间及向量的线性相关性
向量空间的定义
向量空间的性质
向量的线性组合
向量的线性表示
向量的线性相关与线性无关
向量组的等价
极大线性无关组
向量组的秩
2.基、维数与坐标
向量空间的基的定义
基的性质
基的求法
向量空间的维数
维数的求法
向量的坐标
坐标的求法
基的过渡矩阵
过渡矩阵的性质
过渡矩阵的求法
基变换公式
坐标变换公式
3.子空间
子空间的定义
子空间的判别定理
子空间的交与和
生成子空间
子空间的基与维数
维数公式
4.欧氏空间
内积与欧氏空间的定义
内积的性质
向量的长度
向量的夹角
柯西不等式
向量的正交
正交向量组
标准正交基
标准正交化方法
(二)考核目标
1.熟记向量空问的定义、性质,深刻理解向量线性相关性的一系列概念,灵活运用上述概念、性质判断或证明有关的问题。
2.掌握常见的向量空间的基、维数、坐标及过渡矩阵的求法。
3.理解子空间、交子空间和子空间、生成子空间的概念,掌握子空间的判别方法及维数公式的应用。
4.熟记内积与欧氏空间的有关概念,会计算内积、向量的长度、夹角和标准正交基。
七、线性变换
(一)知识范围
1.线性变换及其运算
线性变换的定义
线性变换的性质
线性变换的和
数与线性变换的乘积
线性变换的合成(线性变换的乘积)
线性变换的方幂
线性变换运算的运算律
2.线性变换的矩阵
线性变换的矩阵的定义
线性变换下像向量的坐标
矩阵相似的定义
相似矩阵的性质
线性变换关于不同基的矩阵的相似关系
在一个确定基下线性变换与矩阵间的1—1对应关系
线性变换可逆的条件
3.线性变换和矩阵的特征值、特征向量
特征值
特征向量
特征多项式的定义及系数的特征
特征多项式的求法
特征值的求法
特征向量的求法
4,矩阵的对角化
矩阵对角化的定义
矩阵可对角化的条件
矩阵对角化的方法
(二)考核目标
1.掌握线性变换的定义、性质和基本运算,熟练判断所给的变换是否为线性变换。
2.掌握线性变换矩阵的定义、矩阵相似的定义,会运用线性变换的矩阵计算像的坐标。深刻理解线性变换关于不同基的矩阵--彼此相似。
3.掌握线性变换和矩阵的特征值、特征向量的概念。注意线性变换的特征值、特征向量与矩阵的特征值、特征向量的联系和区别。熟练掌握特征值、特征向量的求法。
4.理解线性变换与矩阵可对角化的含义,熟练掌握可对角化的条件和对角化的方法。对实对称矩阵A会求正交矩阵U,使得u'AU为对角形。
八、二次型
(一)知识范围
1.二次型及其矩阵表示
二次型的矩阵
二次型的秩
变量的线性变换
变量的非退化线性变换
二次型的等价
矩阵合同的定义及性质
等价二次型的矩阵合同
任一对称矩阵必与对角矩阵合同
2.二次型的标准形
化二次型为平方和的方法
二次型的标准型(系数为±l的平方和形式)
化二次型为标准形的方法
实二次型的正惯性指标、负惯性指标、符号差
复二次型、实二次型标准形的唯一性
3.正定二次型
正定二次型的定义
正定矩阵的定义
正定二次型的判定
正定矩阵的判定
(二)考核目标
1.理解二次型及矩阵合同的有关概念,明确施行非退化线性变换前后的两个二次型是等价的,它们的矩阵是合同的。会利用矩阵的初等变换把对称矩阵化为与之合同的对角矩阵。
2.理解二次型的平方和、标准形及实二次型的惯性指标、符号差的概念,掌握化二次型为平方和及标准形的方法
3.熟记正定二次型、正定矩阵的定义及性质,掌握正定二次型与正定矩阵的判别方法。
上一篇上一篇:云南省专升本考试《数学分析》考试大纲