最新资讯
普通专升本高等数学概念汇总
时间:2013-07-09 09:41 来源:未知 作者:博联教育 点击: 次
函数、极限和连续
§1.1 函数
一、 主要内容
㈠ 函数的概念
1. 函数的定义: y=f(x), x∈D
定义域: D(f), 值域: Z(f).
2.分段函数:
3.隐函数: F(x,y)= 0
4.反函数: y=f(x) → x=φ(y)=f-1(y)
y=f-1 (x)
定理:如果函数: y=f(x), D(f)=X, Z(f)=Y
是严格单调增加(或减少)的;
则它必定存在反函数:
y=f-1(x), D(f-1)=Y, Z(f-1)=X
且也是严格单调增加(或减少)的。
㈡ 函数的几何特性
1.函数的单调性: y=f(x),x∈D,x1、x2∈D
当x1<x2时,若f(x1)≤f(x2),
则称f(x)在D内单调增加( );
若f(x1)≥f(x2),
则称f(x)在D内单调减少( );
若f(x1)<f(x2),
则称f(x)在D内严格单调增加( );
若f(x1)>f(x2),
则称f(x)在D内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称
偶函数:f(-x)=f(x)
奇函数:f(-x)=-f(x)
3.函数的周期性:
周期函数:f(x+T)=f(x), x∈(-∞,+∞)
周期:T——最小的正数
4.函数的有界性: |f(x)|≤M , x∈(a,b)
㈢ 基本初等函数
1.常数函数: y=c , (c为常数)
2.幂函数: y=xn , (n为实数)
上一篇上一篇:普通高校专升本高等数学考试应试技巧
下一篇下一篇:普通专升本高等数学解题思路